

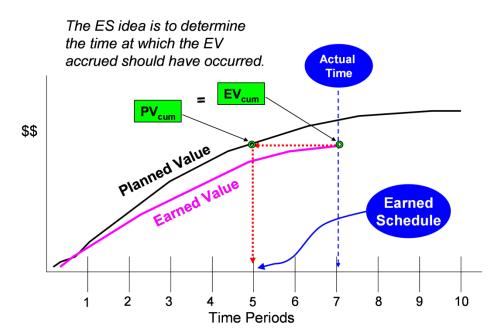
EARNED SCHEDULE

AN EVOLUTION OF EARNED VALUE MANAGEMENT

Walt Lipke PMI® - Oklahoma City +1 405 364 1594 waltlipke@cox.net www.earnedschedule.com

Earned Schedule is an extension to Earned Value Management. The method provides considerable capability to project managers for analysis of schedule performance. From the time of the public's first view of Earned Schedule, its propagation and uptake around the world has been extraordinary. This presentation will cover the capabilities, affirmation, and resources available supporting the practice.

Planning

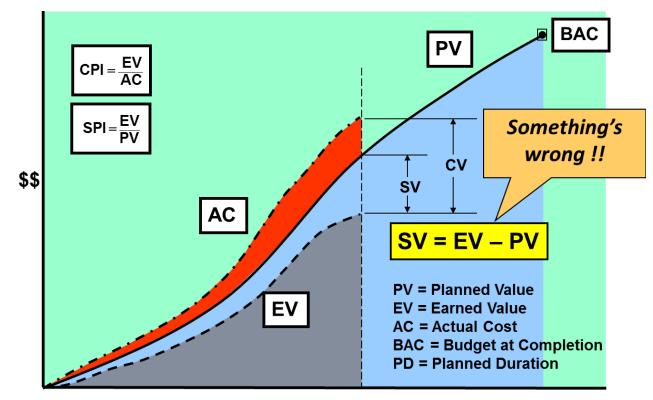


"Planning is an unnatural process; it is much more fun to do something. The nicest thing about not planning is that failure comes as a complete surprise, rather than being preceded by a period of worry and depression."

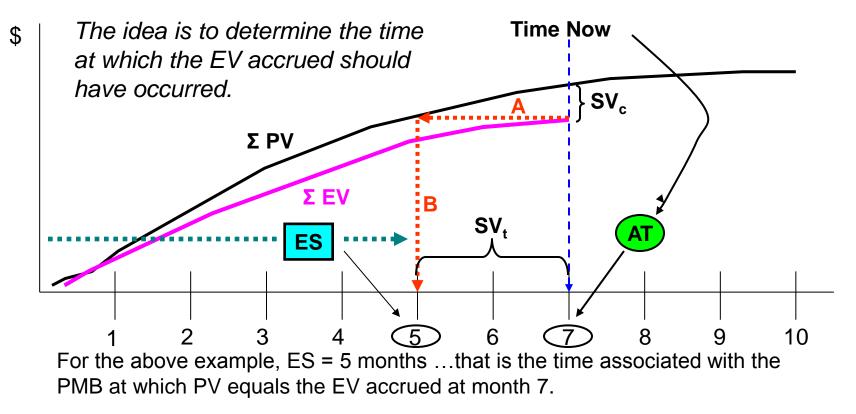
-Sir John Harvey-Jones

Overview

- Description
- Computation
- Capabilities
- Affirmation
- Resources
- Summary



DESCRIPTION


EVM Schedule Indicators

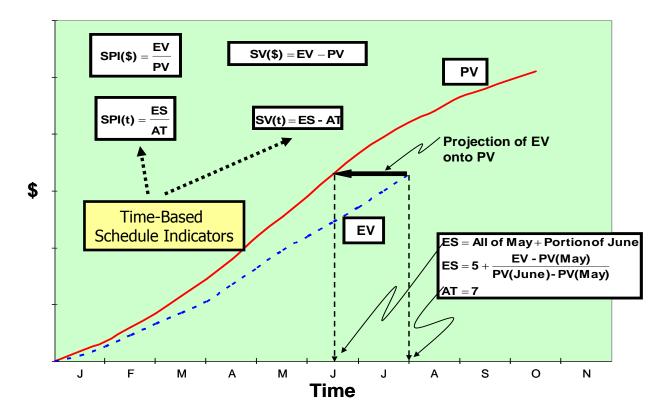
Time

Earned Schedule Concept

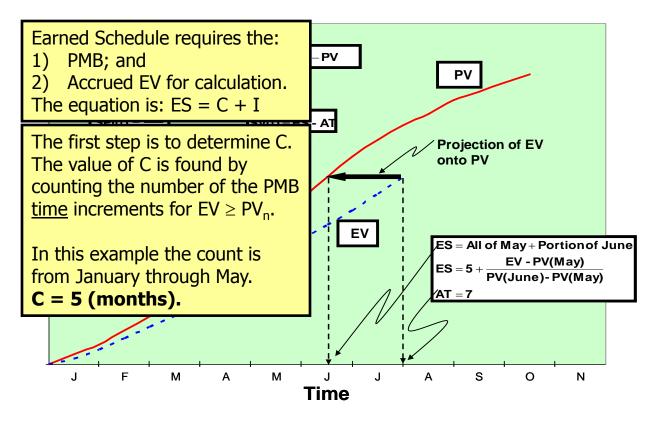
Earned Schedule Concept

- Formula
 - ES = C + I

where: C = number of time increments for EV \ge PV I = (EV - PV_C) / (PV_{C+1} - PV_C)


- Indicators
 - Schedule Variance: SV(t) = ES AT
 - Schedule Performance Index: SPI(t) = ES / AT

ES COMPUTATION

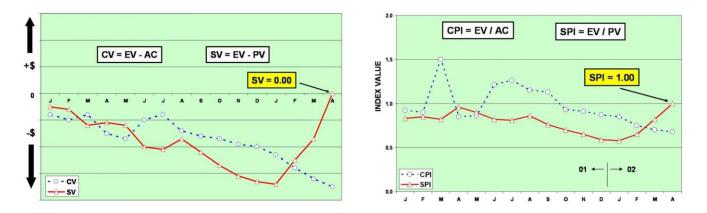


ES Computation Example

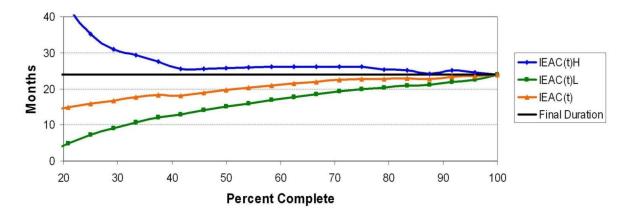
ES Computation Example

ES Computation Example

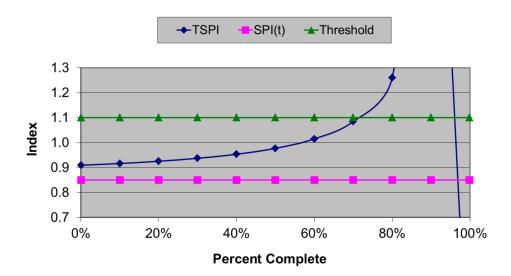
Thus far, ES = 5 + I (months). From ES (5.5 months) we can now In the small box at the lower right, calculate the ES indicators: is the equation for calculating I. SV(t) and SPI(t). For the example, let 1) EV = 100The EV is reported at Actual Time 2) PV_5 (May) = 90 AT = 7, the end of July. 3) PV_6 (June) = 110. SV(t) = 5.5 - 7 = -1.5 months Let's calculate I: I = (100 - 90) / (110 - 90) = 0.5SPI(t) = 5.5 / 7 = 0.79AT = 7ES = 5 + 0.5 = 5.5 (months) Μ А Μ S 0 Α Ν Time


2

CAPABILITIES

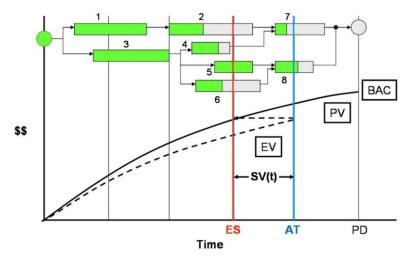

- Reliable indicators SV(t) & SPI(t)
 - True performance at completion

EVM schedule indicators fail for late performing projects


- Forecasting
 - Duration & completion date
 - <u>Always</u> converges to actual result

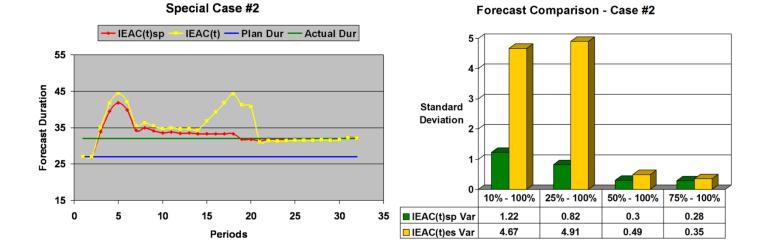
Project #1 - Schedule

- Prediction
 - To Complete Schedule Performance Index (TSPI)
 - Answers question "Is completion at (time) achievable?"

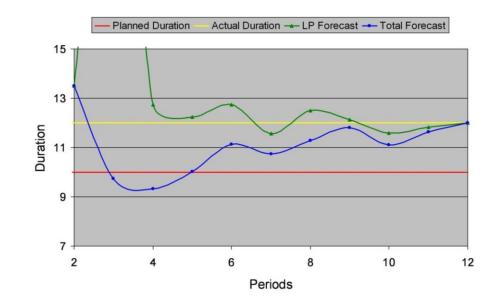


- Critical Path
 - Comparison of project and CP performance

		••• Performance Period •••												
	Indicator	0	1	2	3	4	5	6	7	8	9	10	11	12
	CPIp	XXX	XXX	0.800	0.800	0.827	0.771	0.900	0.838	0.727	0.900	0.750	0.600	1.000
	CPIc	xxx	XXX	0.800	0.800	0.818	0.804	0.818	0.822	0.812	0.816	0.810	0.805	0.808
Total	SPI(t)p	xxx	0.000	0.800	1.486	1.314	0.775	0.450	0.975	0.700	0.450	1.950	0.500	0.600
Project	SPI(t)c	XXX	0.000	0.400	0.762	0.900	0.875	0.804	0.829	0.813	0.772	0.890	0.855	0.833
	SPIp	XXX	0.000	0.800	0.457	1.433	0.675	0.600	1.550	3.200	0.900	3.000	XXX	XXX
	SPIc	XXX	0.000	0.400	0.444	0.840	0.783	0.745	0.842	0.912	0.911	0.968	0.984	1.000
	IEAC(t)	XXX	XXX	25.00	13.13	11.11	11.43	12.44	12.07	12.31	12.95	11.24	11.70	12.00
	CPIp	XXX	XXX	0.800	0.800	0.833	0.600	XXX	0.800	0.667	XXX	0.714		
	CPIc	XXX	XXX	0.800	0.800	0.815	0.781	0.781	0.787	0.763	0.763	0.753		
Critical Path	SPI(t)p	xxx	0.000	0.800	1.600	2.000	0.600	0.000	1.700	1.300	0.000	2.000		
1-4-8-10	SPI(t)c	xxx	0.000	0.400	0.800	1.100	1.000	0.833	0.957	1.000	0.889	1.000		
	SPIp	xxx	0.000	0.800	1.600	2.000	0.600	0.000	1.200	1.600	0.000	2.000		
	SPIc	XXX	0.000	0.400	0.800	1.100	1.000	0.833	0.925	1.000	0.900	1.000		
	IEAC(t)	XXX	XXX	25.00	12.50	9.09	10.00	12.00	10.45	10.00	11.25	10.00	XXX	XXX



- Detail Analysis Schedule Adherence
 - Identifies out of sequence performance
 - Isolates tasks constraints/impediments & rework
 - Facilitates calculations SA metric & rework forecast



- Discontinuous performance stop work & downtime
 - Accommodates and improves forecasting

- Capabilities
- Schedule Topology
 - Longest path concept improves forecasts for parallel networks

Earned Schedule Terminology

Metrics	Earned Schedule	ES _{cum}	$\label{eq:ES} \begin{array}{l} \text{ES} = \text{C} + \text{I} \\ \text{number of periods (C), EV} \geq \text{PV}_{\text{C}} \\ \text{plus an incomplete portion (I)} \end{array}$		
	Actual Time	AT _{cum}	AT = number of periods executed		
Indicators	Schedule Variance	SV(t)	SV(t) = ES – AT		
	Schedule variance	SV(t)%	SV(t)% = (ES – AT) / ES		
	Schedule Performance Index	SPI(t)	SPI(t) = ES / AT		
Predictor	To Complete Schedule	TSPI	TSPI = (PD – ES) / (PD – AT)		
	Performance Index		TSPI = (PD – ES) / (ED – AT)		
Forecasts	Independent Estimate		IEAC(t) = PD / SPI(t)		
	at Completion (time)	IEAC(t)	IEAC(t) = AT + (PD – ES) / PF(t)		
	Variance at Completion (time)	VAC(t)	VAC(t) = PD – IEAC(t) or ED		

AFFIRMATION

Affirmation

- Simple theory
- Initial prototype
- Independent confirmation
 - Trials
 - Testing
 - Usage
- EVM Tools
- Educators/Researchers
- Standards & Guides
- Awards

Affirmation

- Simple theory
- Initial prototype
- Independent confirmation
 - Trials

"The retrospective analysis of ES using my own EVM projects' data, ... has confirmed with remarkable precision the accuracy of the ES concept and ES metrics ...when compared to their historic EVM counterparts."

- Henderson (2003)

Awards

Simple theory

"The results reveal that the earned schedule method outperforms, on the average, all other forecasting methods." - Vanhoucke & Vandevoorde (2007)

Testing

"This research finds Earned Schedule to be a more timely and accurate predictor than Earned Value Management." - Capt. Kevin Crumrine (2013)

Standards & Guides

Awards

Affirmation

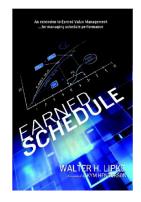
	Evi	dence of Earned Schedule Usage					
	USA	Lockheed-Martin Boeing Booze-Allen-Hamilton					
Application	Australia	Government & Defense Projects are generally extremely large, running for a decade or more and costing in excess of					
	UK	Network Rail & Defense \$1 Billion.					
	Belgium	Fabricom (GDF-SUEZ)					
	Kazakhstan India	Petroleum Development Building Construction					
		Durding Constitution					
University Coursework	USA	George Washington University, Drexel, University of Houston, University of Nevada (Reno), West Virginia University, Pennsylvania State University					
	non-USA	University of Ghent (Belgium), Australian National University					
	USA	Earned Schedule by Walter H. Lipke Project Management Theory and Practice by Dr. Gary L. Richardson The Earned Value Maturity Model by Ray W. Stratton					
Books		A Practical Guide to Earned Value Management, 2nd Edition by Charles & Charlene Budd Project Management Achieving Competitive Advantage by Jeffrey K. Pinto					
		Practice Standard for Earned Value Management by Project Management Institute					
	non-USA	Measuring Time: Improving Project Performance Using Earned Value Management by Dr. Mario Vanhoucke					
		Earned Schedule - an emerging Earned Value technique issued by UK APM EVM SIG					

Affirmation

Simple theory

- PMI Practice Standard for EVM
- PMI Project Management Body of Knowledge
- PMI Practice Standard for Scheduling (pending)
- NDIA Predictive Measures Guide
- NDIA Planning and Scheduling Excellence Guide
- ISO Standard for EVM
- Australian Standard for EVM (in work)
- Standards & Guides
- Awards

RESOURCES



Resources

Earned Schedule Website

http://www.earnedschedule.com/

- Papers, Presentations, Calculators, Terminology,
- Standards & Guides
- *Earned Schedule* book (English, Japanese, Portuguese, Spanish)
 - Print
 - ePub (Nook & iPad)
 - Kindle
 - PDF

Resources

- To Begin ... use the website
 - View the "Introduction Video"
 - Download and read two articles
 - "Schedule is Different"
 - "Further Developments in Earned Schedule"
- Scan the Calculators ... experiment with them
 - ES Calculator (v1b)
 - P-Factor Calculator
 - Statistical Forecasting Calculator
 - SA Index & Rework Calculator
 - Prediction Analysis Calculator

Name	Country	Email		
Walt Lipke	USA	waltlipke@cox.net		
Kym Henderson	Australia	kym.henderson@gmail.com		
Mario Vanhoucke	Belgium	mario.vanhoucke@ugent.be		
Stephen Vandevoorde	Belgium	stephen.vandevoorde@ fabricom-gdfsuez.com		
Alex Davis	UK	alex.davis@uwclub.net		
Robert Van De Velde	Canada	vandev@primus.ca		
Kotaro Mizuno	Japan	kmamizuno@nifty.com		
Paulo André de Andrade	Brazil	pandre@techisa.srv.br		
Diego Navarro	Spain	dnavarro@armell.com		

SUMMARY

Summary

- Derived from EVM data ... only
- Provides time-based schedule indicators
- Indicators do not fail for late finish projects
- Application is scalable up/down, just as is EVM
- Schedule forecasting & analysis is better than any other EVM method presently used
 - SPI(t) & SV(t) behave similarly to CPI & CV
 - IEAC(t) = PD / SPI(t) behaves similarly to IEAC = BAC / CPI

Summary

- Schedule performance analysis much easier and possibly better than "bottom-up" methods
- Application is growing in both small and large projects
- Practice recognized in Standards & Guides
- Resource availability enhanced with ES website and Wikipedia
- Research indicates ES superior to other methods

Hopefully you are encouraged to – <u>Give ES a try!</u>

Thank \

Vou!!